Joint Meeting of the Precast/Prestressed Concrete Institute (PCI) and the SC Department of Transportation (SCDOT)

BRIEF STATUS REPORT

ACCELERATED BRIDGE CONSTRUCTION: PRECAST ALTERNATE FOR FLAT SLAB SPANS

Presented by:

Scott D. Schiff, PhD

Glenn Department of Civil Engineering

Clemson University

November 7, 2013

PART 1: COMPLETED WORK

PIs: Nielson, Pang and Schiff

PhD Student: Sheng

MS Students: Roberts, Deery, Funcik, Flores and Stevenson

MOTIVATION

Cast-in-Place vs Precast Construction

- Advantages: ABC
- Issues: Joint performace anddurability

□NEXT-D vs Hollow Core/Beam

- Promising (High ADT, robust joint)
- Gaps in knowledge

Modified NEXT-D cross section

Shorter span and narrower width

BIG PICTURE

EXPERIMENT

Focus

- Initial strength and stiffness from static testing
- Degradation and durability) from fatigue test
- Consider two moment/shear demand ratios

SHEAR KEY MATERIAL

Traditional concrete grout vs UHPC grout

- Quikrete + PVA fibers
- UHPC + steel or PVA fibers

SPECIMEN TESTING

INITIAL BOND TESTING

Static test: bond cracking strength

□Cylinder test

STA 02

Specimen

Bond cracking strength (kip ×in/in)

34

STA 01

LONG-TERM BOND TESTING

□Fatigue test

- No seepage
- Rebar strain

SHEAR KEY FEM

U-bar configuration

Elements

SHEAR KEY FEM CALIBRATION

□Static test => model calibration => bridge FEM

STIFFNESS MATRIX

BRIDGE DESIGN

□Target:

- Cross section: NEXT-D6 and NEXT-D8
- Span lengths: 22, 30 and 40 feet
- Parapet and overhang design
- Beam design
- Deck design
- Provide guidelines for NEXT-D bridge design

PARAPET/OVERHANG DESIGN

Use the current rebar configuration as requested by SCDOT

- Overdesign of the middle zone of parapet wall
- Overdesign of the middle zone of overhang
- Uniform rebar configuration

BEAM ANALYSIS AND DESIGN

□Stem spacing < 4ft, therefore refined method needed

Load distribution factors

AASHTO LDFs are recommended

Beam design: CONSPAN

- Prestressing strand design and vertical reinforcement design
- Exterior beam should not to be weaker than interior beam (LRFD Article 2.5.2.7)

DECK ANALYSIS

□3-D FEM method

- Cannot reflect the change of deck span like NEXT-D7
- Detail modeling is time-consuming
- AASHTO method (commonly used)
 - Does not reflect alternating deck spacing or span length change

Formulas need to be developed

Relate AASHTO FEM with 3-D FEM demands

DECK DESIGN

NEXT 8 --- Final design capacity VS demand

Span length	pan Rebar ength config. ft)	Strength I				Service I			
		M+ (kip*ft/ft)		M- (kip*ft/ft)		M+ (kip*ft/ft)		M- (kip*ft/ft)	
(ft)		Demand	Capacity	Demand	Capacity	Demand	Capacity	Demand	Capacity
22	#4@7″	7.61	13.59	-4.87	-8.90	4.35	8.42	-2.78	-3.32
30	#4@7"	11.98	13.59	-4.87	-8.90	6.85	8.42	-2.78	-3.32
40	#4@5″	17.44	18.29	-4.87	-11.47	9.96	14.41	-2.78	-5.36

Span	Dehar	Strength I				Service I			
length	config	M+ (kip*ft/ft)		M- (kip*ft/ft)		M+ (kip*ft/ft)		M- (kip*ft/ft)	
(ft)	coning.	Demand	Capacity	Demand	Capacity	Demand	Capacity	Demand	Capacity
22	#4@10"	4.72	9.79	-1.10	-6.55	2.70	4.61	-0.63	-1.92
30	#4@10"	7.84	9.79	-2.07	-6.55	4.48	4.61	-1.18	-1.92
40	#4@7"	11.74	13.59	-2.99	-8.90	6.71	8.42	-1.71	-3.32

PAPERS IN PROGRESS

□Paper 1: Static test and model calibration

Sensitivity of stiffness to selected parameters

Paper 2: Long-term performance

- Bond performance
- Stiffness degradation
- Conservativeness of fatigue loads
- Sensitivity study of fatigue demands

□Paper 3: Bridge design

- Load distribution factor determination
- Transverse demand determination
- Design guidelines

(Continued on back)

PART 2: ON-GOING WORK

PIs: Rangaraju and Schiff Post-Doc: Venkata PhD Student: Li MS Student: Cousins and Johnson

EXPERIMENTAL WORK

Modified Quikrete

- Improved workability
- Improved bond strength

Generic UHPC (maybe just a HPC or VHPC)

- Strength and Stiffness
- Bond to precast and rebar
- Workability and Durability
- Shrinkage

Rebar Development

- Lollypop (rebar/confined cylinder)
- Lollypop (rebar/unconfined cylinder)
- Design guidelines
- Shear Key Testing
 - U-bar in generic UHPC (static)
 - Straight bars in generic UHPC (static)
 - Generic UHPC (fatigue)

PART 3: FUTURE WORK

PIs: Schiff, Cousins (Virginia Tech), Rangaraju and ...PhD Students: Li and ...MS Students: Cousins, Johnson and ...

EXPERIMENTAL WORK

□IBRD (4 simple spans: 40'-70'-70'-40')

- Approach spans
 - Modified NEXT-D based of recommendations of completed work
 - Hollow Core or Solid Slab with improved shear key and UHPC grout
- Main spans
 - Hollow Box with typical key and UHPC grout
 - Hollow Box with ...
- Monitored casting of precast pieces and on-site construction
- Bridge testing at opening and after 6, 12 and 18 months of traffic

Refined improvements to generic UHPC

Additional testing of longitudinal joints

Testing on continuity joints between spans

- Influence of construction and/or adjacent traffic loads on performance of shear keys and continuity joints
 - Work with Tommy Cousins at Virginia Tech to gain support for an FHWA pooled fund study to address short development lengths in UHPC

COMMENTS OR QUESTIONS

Scott D. Schiff scott.schiff@ces.clemson.edu 864.656.0456